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Abstract: In this paper, the dynamic behaviour of two collinear interface cracks between two
dissimilar functionally graded piezoelectric/piezomagnetic material half-infinite planes sub-
jected to the harmonic anti-plane shear stress waves is investigated. To make the analysis tract-
able, it is assumed that the material properties vary exponentially with coordinate vertical to the
crack. By using the Fourier transform technique, the problem can be solved with the help of a
pair of triple integral equations, in which the unknown variable is the jump of the displacements
across the crack surfaces. These equations are solved by using the Schmidt method. The
relations among the electric field, the magnetic flux field, and the dynamic stress field near
the crack tips can be obtained. Numerical examples are provided to show the effect of the func-
tionally graded parameter, the distance between two interface cracks, and the circular frequency
of the incident waves upon the stress, the electric displacement, and the magnetic flux intensity
factors of cracks.

Keywords: functionally graded piezoelectric/piezomagnetic materials, two collinear interface
cracks, stress wave

1 INTRODUCTION

The piezoelectric/piezomagnetic composite mate-
rials have been found to have wide applications in
the smart systems of aerospace, automotive, medi-
cal, and electric fields because of the intrinsic
coupling characteristics among their electric, mag-
netic, and mechanical fields. As the piezoelectric/
piezomagnetic composite materials are being
extensively used as actuators or transducers in
the technologies of smart and adaptive systems, the
mechanical reliability and durability of these
materials become increasingly important. Therefore,

it is of great importance to study the magneto-
electro-elastic interaction and fracture behaviours
of magneto-electro-elastic composites [1–12]. On
the other hand, the development of functionally
graded materials has demonstrated that they have
the potential to reduce the stress concentration and
increase of fracture toughness. Consequently, some
applications of functionally graded piezoelectric
materials have been made [13, 14]. Recently, the
fracture problems of functionally graded piezoelec-
tric materials have been considered in references
[15–20]. Li and Weng [19] first considered the
static anti-plane problem of a finite crack in func-
tionally graded piezoelectric material strip. Their
results showed that the singular stress and the singu-
lar electric displacement in functionally graded
piezoelectric materials carry the same forms as
those in the homogeneous piezoelectric materials
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but the magnitudes of the intensity factors depend
significantly upon the gradient of the functionally
graded piezoelectric materials properties. More
recently, the concept of functionally graded
materials was first extended to the piezoelectric/
piezomagnetic materials to improve the reliability
of piezoelectric/piezomagnetic materials and struc-
tures in references [21, 22]. The results also showed
that the singular stress, the singular electric displace-
ment, and the singular magnetic flux in functionally
graded piezoelectric/piezomagnetic materials carry
the same forms as those in the homogeneous piezo-
electric/piezomagnetic materials but themagnitudes
of the intensity factors depend significantly upon the
gradient of the functionally graded piezoelectric/
piezomagnetic materials properties. However, to
our knowledge, the dynamic magneto-electro-elastic
behaviour of functionally graded piezoelectric/
piezomagnetic materials with two collinear interface
cracks subjected to the harmonic anti-plane shear
stress waves has not been studied. Thus, the present
work is an attempt to fill this information needed.
Here, we just attempt to give a theoretical solution
for this problem.

In this paper, the dynamic magneto-electro-elastic
behaviour of two collinear permeable interface cracks
between two dissimilar functionally graded piezo-
electric/piezomagnetic material half-infinite planes
subjected to the harmonic anti-plane shear stress
waves is investigated using the Schmidt method
[23]. The advantages of the Schmidt method are that
it can be used to solve the first kind Fredholm integral
equation as shown in reference [23] and the special
kind dual integral equations as discussed in refer-
ence [24]. To make the analysis tractable, it is
assumed that the material properties vary exponen-
tially with coordinate vertical to the crack. Fourier
transform is applied and a mixed boundary-value
problem is reduced to a pair of triple integral
equations. To solve the triple integral equations, the
jump of the displacements across the crack surfaces
is expanded in a series of Jacobi polynomials.Numeri-
cal solutions are obtained for the dynamic stress, the
electric displacement, and themagnetic flux intensity
factors for permeable crack surface conditions.

2 FORMULATION OF THE PROBLEM

It is assumed that there are two collinear interface
cracks of length 12 b between two dissimilar func-
tionally graded piezoelectric/piezomagnetic material
half-planes as shown in Fig. 1. 2b is the distance
between two collinear cracks (The solution of two
collinear cracks of length d2 b in functionally
graded piezoelectric/piezomagnetic materials can
be easily obtained by a simple change in the

numerical values of the present paper for crack
length 12 b/d, d . b . 0.) It is also assumed that
the propagation direction of the harmonic elastic
anti-plane shear stress wave is vertical to the crack
in functionally graded piezoelectric/piezomagnetic
materials. Let v be the circular frequency of the inci-
dent wave. w(i)

0 (x, y, t), f(i)
0 (x, y, t), and c(i)

0 (x, y, t)(i ¼
1, 2) are the mechanical displacement, the electric
potential, and the magnetic potential, respectively.
t(i)zk0(x, y, t), D

(i)
k0(x, y, t), and B(i)

k0(x, y, t) (k ¼ x, y, i ¼
1, 2) are the anti-plane shear stress field, in-plane
electric displacement field, and in-plane magnetic
flux, respectively. Also note that all quantities with
superscript i (i ¼ 1, 2) refer to the upper half-plane
1 and the lower half-plane 2 as shown in Fig. 1,
respectively. Because the incident waves are harmo-
nic anti-plane shear stress waves, all field quantities

w(i)
0 (x,y,t),f(i)

0 (x,y,t), c(i)
0 (x,y,t), t(i)zk0(x,y,t),D

(i)
k0(x,y,t),

and B(i)
k0(x, y, t) can be assumed to be of the forms as

follows

½w(i)
0 (x, y, t), f(i)

0 (x, y, t), c(i)
0 (x, y, t),

t(i)zk0(x, y, t), D
(i)
k0(x, y, t), B

(i)
k0(x, y, t)�

¼ ½w(i)(x, y), f(i)(x, y), c(i)(x, y),

t(i)zk(x, y), D
(i)
k (x, y), B(i)

k (x, y)�e�ivt (1)

In what follows, the time dependence of e�ivt will
be suppressed but understood. The functionally
graded piezoelectric/piezomagnetic materials
boundary-value problem for the harmonic anti-
plane shear waves is considerably simplified if only
the out-of-plane mechanical displacements, the
in-plane electric fields, and the in-plane magnetic
fields are considered. As discussed in references
[25, 26], as no opening displacement exists for the
present anti-plane problem, the crack surfaces can
be assumed to be in perfect contact. Accordingly,
permeable condition will be enforced in the present
study, i.e. the electric potential, the magnetic poten-
tial, the normal electric displacement, and the mag-
netic flux are assumed to be continuous across the
crack surfaces. Here, the standard superposition
technique was used in the present paper. Therefore,
the boundary conditions of the present problem are

Fig. 1 Geometry and coordinate system for two

collinear cracks
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(In this paper, we just consider the perturbation
fields.)

t(1)yz (x, 0
þ)¼ t(2)yz (x, 0

�)¼�t0, b4 xj j4 1

t(1)yz (x, 0
þ)¼ t(2)yz (x, 0

�),w(1)(x, 0þ)

¼w(2)(x, 0�), xj j. 1, xj j,b

8><
>:

(2)

f(1)(x, 0þ)¼f(2)(x, 0�),D(1)
y (x, 0þ)¼D(2)

y (x, 0�)

c(1)(x, 0þ)¼c(2)(x, 0�), B(1)
y (x, 0þ)¼B(2)

y (x, 0�),
xj j41

8><
>:

(3)

w(1)(x, y)¼w(2)(x, y)¼ 0

f(1)(x, y)¼f(2)(x, y)¼ 0

c(1)(x, y)¼c(2)(x, y)¼ 0

8><
>: for (x2þy2)1=2 !1

(4)

where t0 is a magnitude of the incident wave.
Crack problems in the non-homogeneous piezo-

electric/piezomagnetic materials do not appear to
be analytically tractable for arbitrary variations of
material properties. Usually, one tries to generate
the forms of non-homogeneities for which the pro-
blem becomes tractable. Similar to the treatment of
the crack problem for isotropic non-homogeneous
materials in references [15–22, 27–29], the material
properties are described by

c(1)44 ¼ c(1)440e
b(1)y , e(1)15 ¼ e(1)150e

b(1)y ,

1(1)11 ¼ 1(1)110e
b(1)y

q(1)
15 ¼ q(1)

150e
b(1)y , d(1)

11 ¼ d(1)
110e

b(1)y ,

m(1)
11 ¼ m(1)

110e
b(1)y , r(1)(y) ¼ r(1)0 eb

(1)y

c(2)44 ¼ c(2)440e
b(2)y , e(2)15 ¼ e(2)150e

b(2)y ,

1(2)11 ¼ 1(2)110e
b(2)y

q(2)
15 ¼ q(2)

150e
b(2)y , d(2)

11 ¼ d(2)
110e

b(2)y ,

m(2)
11 ¼ m(2)

110e
b(2)y , r(2)(y) ¼ r(2)0 eb

(2)y (5)

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

where c(i)440, e
(i)
150, 1

(i)
110, q

(i)
150, d

(i)
150, m

(i)
110, r

(i)
0 , and b(i) are

the shear modulus, the piezoelectric coefficient, the
dielectric parameter, the piezomagnetic coefficient,
the magnetoelectric coefficient, the magnetic per-
meability, the mass density, and the functionally
graded parameter of two dissimilar functionally
graded piezoelectric/piezomagnetic material half-
planes, respectively.

The constitutive equations for the mode III crack
can be expressed as

t(i)zk ¼ c(i)44w
(i)
,k þ e(i)15f

(i)
,k þ q(i)

15c
(i)
,k

(k ¼ x, y, i ¼ 1, 2) (6)

D(i)
k ¼ e(i)15w

(i)
,k � 1(i)11f

(i)
,k � d(i)

11c
(i)
,k

(k ¼ x, y, i ¼ 1, 2) (7)

B(i)
k ¼ q(i)

15w
(i)
,k � d(i)

11f
(i)
,k � m(i)

11c
(i)
,k

(k ¼ x, y, i ¼ 1, 2) (8)

The anti-plane governing equations are [1, 2]

c(i)440 r2w(i) þ b(i) @w
(i)

@y

� �
þ e(i)150 r2f(i) þ b(i) @f

(i)

@y

� �

þ q(i)
150 r2c(i) þ b(i) @c

(i)

@y

� �
¼ �r(i)0 v2w(i) (9)

e(i)150 r2w(i) þ b(i) @w
(i)

@y

� �
� 1(i)110 r2f(i) þ b(i) @f

(i)

@y

� �

� d(i)
110 r2c(i) þ b(i) @c

(i)

@y

� �
¼ 0 (10)

q(i)
150 r2w(i) þ b(i) @w

(i)

@y

� �
� d(i)

110 r2f(i) þ b(i) @f
(i)

@y

� �

� m(i)
110 r2c(i) þ b(i) @c

(i)

@y

� �
¼ 0 (11)

where

�r(i)0 v2w(i)(x, y)e�ivt ¼ r(i)0
@2w(i)

0 (x, y, t)

@t2

¼ r(i)0
@2(w(i)(x, y)e�ivt)

@t2

and
r2 ¼ @2/@x 2þ @2/@y 2 is the two-dimensional

Laplace operator.

3 SOLUTIONS

Because of the assumed symmetry in geometry and
loading, it is sufficient to consider the problem for
0 4 x , 1, 21 4 y , 1 only. The system of the
earlier governing equations (9) to (11) is solved
using the Fourier integral transform technique to
obtain the general expressions for the displacement
components, the electric potentials, and the
magnetic potentials as

w(1)(x, y) ¼ 2

p

ð1
0

A1(s)e
�g(1)

1
y cos (sx)ds

f(1)(x, y) ¼ a(1)
0 w(1)(x, y)þ 2

p

ð1
0

B1(s)e
�g(1)

2
y

� cos (sx)ds (y 5 0)

c(1)(x, y) ¼ a(1)
1 w(1)(x, y)

þ 2

p

ð1
0

C1(s)e
�g(1)

2
y cos (sx)ds (12)

8>>>>>>>>>>>><
>>>>>>>>>>>>:
w(2)(x, y) ¼ 2

p

ð1
0

A2(s)e
�g(2)

1
y cos (sx)ds

f(2)(x, y) ¼ a(2)
0 w(2)(x, y)þ 2

p

ð1
0

B2(s)e
�g(2)

2
y

� cos (sx)ds (y 4 0)

c(2)(x, y) ¼ a(2)
1 w(2)(x, y)þ 2

p

ð1
0

C2(s)e
�g(2)

2
y

� cos (sx)ds (13)

8>>>>>>>>>>><
>>>>>>>>>>>:

Scattering of the harmonic anti-plane shear stress waves 139

JMES129 # IMechE 2006 Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science

 at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


where A1(s), B1(s), C1(s), A2(s), B2(s), C2(s) are
unknown functions

g(1)1 ¼
b(1) þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(1)2 þ 4½s2 � v2=c21�

q
2

g(1)2 ¼ b(1) þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(1)2 þ 4s2

p
2

, c1 ¼
ffiffiffiffiffiffiffiffi
m(1)
0

r(1)0

s

m(1)
0 ¼ c(1)440 þ a(1)

0 e(1)150 þ a(1)
1 q(1)

150

a(1)
0 ¼ m(1)

110e
(1)
150 � d(1)

110q
(1)
150

1(1)110m
(1)
110 � d(1)2

100

a(1)
1 ¼ q(1)

1501
(1)
110 � d11e

(1)
150

1(1)110m
(1)
110 � d(1)2

100

g(2)1 ¼
b(2) þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(2)2 þ 4½s2 � v2=c22�

q
2

g(2)2 ¼ b(2) þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(2)2 þ 4s2

p
2

, c2 ¼
ffiffiffiffiffiffiffiffi
m(2)
0

r(2)0

s

m(2)
0 ¼ c(2)440 þ a(2)

0 e(2)150 þ a(2)
1 q(2)

150

a(2)
0 ¼ m(2)

110e
(2)
150 � d(2)

110q
(2)
150

1(2)110m
(2)
110 � d(2)2

110

a(2)
1 ¼ q(2)

1501
(2)
110 � d(2)

110e
(2)
150

1(2)110m
(2)
110 � d(2)2

110

Therefore, from equations (6) to (8), it can be
obtained

t(1)yz (x, y) ¼ � 2eb
(1)y

p

ð1
0

{m(1)
0 g(1)1 A1(s)e

�g(1)
1
y

þ g(1)2 ½e(1)150B1(s)þ q(1)
150C1(s)�e�g(1)

2
y}

� cos (sx)ds (14)

D(1)
y (x, y) ¼ 2eb

(1)y

p

ð1
0

g(1)2 ½1(1)110B1(s)

þ d(1)
110C1(s)�e�g(1)

2
y cos (sx)ds (15)

B(1)
y (x, y) ¼ 2eb

(1)y

p

ð1
0

g(1)2 ½d(1)
110B1(s)

þ m(1)
110C1(s)�e�g(1)

2
y cos (sx)ds (16)

t(2)yz (x, y) ¼
2eb

(2)y

p

ð1
0

{m(2)
0 g(2)1 A2(s)e

g(2)
1
y

þ g(2)2 ½e(2)150B2(s)

þ q(2)
150C2(s)�eg

(2)
2
y} cos (sx)ds (17)

D(2)
y (x, y) ¼ � 2eb

(2)y

p

ð1
0

g(2)2 ½1(2)110B2(s)

þ d(2)
110C2(s)�eg

(2)
2
y cos (sx)ds (18)

B(2)
y (x, y) ¼ � 2eb

(2)y

p

ð1
0

g(2)2 ½d(2)
110B2(s)

þ m(2)
110C2(s)�eg

(2)
2
y cos (sx)ds (19)

To solve the problem, the jump of the displacements
across the crack surfaces is defined as follows

f (x) ¼ w(1)(x, 0þ)�w(2)(x, 0�) (20)

Substituting equations (12) and (13) into equation
(20), and applying the Fourier transform and the
boundary conditions (3), it can be obtained

�f (s) ¼ A1(s)� A2(s) (21)

a(1)
0 A1(s)� a(2)

0 A2(s)þ B1(s)� B2(s) ¼ 0 (22)

a(1)
1 A1(s)� a(2)

1 A2(s)þ C1(s)� C2(s) ¼ 0 (23)

A superposed bar indicates the Fourier transform
throughout the paper. Substituting equations (14)
to (19) into the boundary conditions (2) to (4), it
can be obtained

m(1)
0 g(1)1 A1(s)þg(1)2 ½e(1)150B1(s)þq(1)

150C1(s)�
þm(2)

0 g(2)1 A2(s)þg(2)2 ½e(2)150B2(s)þq(2)
150C2(s)� ¼0 (24)

g(1)2 ½1(1)110B1(s)þd(1)
110C1(s)�

þg(2)2 ½1(2)110B2(s)þd(2)
110C2(s)� ¼0 (25)

g(1)2 ½d(1)
110B1(s)þm(1)

110C1(s)�
þg(2)2 ½d(2)

110B2(s)þm(2)
110C2(s)�¼0 (26)

By solving six equations (21) to (26) with six
unknown functions and substituting the solutions
into equations (14) to (16) and applying the bound-
ary conditions (2) and (3), it can be obtained

2

p

ð1
0

�f (s)cos(sx)ds¼0, x.1, 0, x,b (27)

2

p

ð1
0

g1(s)�f (s)cos(sx)ds¼�t0, b4x41 (28)

where g1(s) is a known function (Appendix 2).
lims!1g1(s)=s¼b1. b1 is a constant which depends
on the properties of thematerials (Appendix 2). How-
ever, b1 is independent of the functionally graded
parameters b(1) and b(2). When the properties of the
upper and the lower half-planes are continuous

along the crack line, b1¼�c(1)440=2. To determine the

unknown function �f (s), a pair of triple integral
equations (27) and (28) must be solved.
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4 SOLUTION OF THE TRIPLE INTEGRAL
EQUATIONS

The Schmidt method [23] is used to solve the triple
integral equations (27) and (28). The jump of the dis-
placements across the crack surfaces is represented
by the following series

f (x) ¼
X1
n¼0

bnP
(1=2,1=2)
n

x � (1þ b)=2

(1� b)=2

� �

� 1� (x � (1þ b)=2)2

((1� b)=2)2

� �1=2

, for b 4 x 4 1

(29)

f (x) ¼ w(1)(x, 0)�w(2)(x, 0)

¼ 0, for x . 1, 0 , x , b (30)

where bn are unknown coefficients to be determined
and P(1=2,1=2)

n (x) is a Jacobi polynomial [30]. The
Fourier transform of equations (29) and (30) is [31]

�f (s) ¼
X1
n¼0

bnFnGn(s)
1

s
Jnþ1 s

1� b

2

� �
(31)

where

Fn ¼ 2
ffiffiffiffi
p

p G(nþ 1þ (1=2))

n!
,

Gn(s) ¼
(� 1)n=2 cos s

1þ b

2

� �
, n ¼ 0, 2, 4, 6, . . .

(� 1)(nþ1)=2 sin s
1þ b

2

� �
, n ¼ 1, 3, 5, 7,

8>><
>>:

G(x) and Jn(x) are the Gamma and Bessel functions,
respectively.

Substituting equation (31) into equations (27) and
(28), equation (27) has been automatically satisfied.
After integration with respect to x in ½b, x�, equation
(28) reduces to

2

p

X1
n¼0

bnFn

ð1
0

1

s2
g1(s)Gn(s)Jnþ1 s

1� b

2

� �

� ½sin (sx)� sin (sb)�ds
¼ �t0(x � b), for b 4 x 4 1 (32)

The semi-infinite integral in equation (32) can
be numerically evaluated easily as shown in
Appendix 3. Thus, equation (32) can now be solved
for the coefficients bn by the Schmidt method [23],
as shown in Appendix 4.

5 INTENSITY FACTORS

The coefficients bn are known, so that the entire
perturbation stress field, the perturbation electric
displacement field, and the magnetic flux can be
obtained. However, in fracture mechanics, it is of
importance to determine the perturbation stress t(1)yz ,
the perturbation electric displacement D(1)

y , and the
magnetic flux B(1)

y in the vicinity of the crack tips. In
the case of the present study, t(1)yz , D

(1)
y , and B(1)

y

along the crack line can be expressed, respectively, as

t(1)yz (x, 0) ¼
2

p

X1
n¼0

bnFn

ð1
0

1

s
g1(s)Gn(s)

� Jnþ1 s
1� b

2

� �
cos (xs)ds

¼ 2b1

p

X1
n¼0

bnFn

�
ð1
0

Gn(s)Jnþ1 s
1� b

2

� �
cos (xs)ds

þ 2

p

X1
n¼0

bnFn

ð1
0

1

s
g1(s)� b1

� �

� Gn(s)Jnþ1 s
1� b

2

� �
cos (xs)ds (33)

D(1)
y (x, 0) ¼ 2

p

X1
n¼0

bnFn

�
ð1
0

1

s
g2(s)Gn(s)Jnþ1 s

1� b

2

� �
cos (xs)ds

¼ 2b2

p

X1
n¼0

bnFn

�
ð1
0

Gn(s)Jnþ1 s
1� b

2

� �
cos (xs)ds

þ 2

p

X1
n¼0

bnFn

ð1
0

1

s
g2(s)� b2

� �
Gn(s)

� Jnþ1 s
1� b

2

� �
cos (xs)ds (34)

B(1)
y (x, 0) ¼ 2

p

X1
n¼0

bnFn

�
ð1
0

1

s
g3(s)Gn(s)Jnþ1 s

1� b

2

� �
cos (xs)ds

¼ 2b3

p

X1
n¼0

bnFn

�
ð1
0

Gn(s)Jnþ1 s
1� b

2

� �
cos (xs)ds

þ 2

p

X1
n¼0

bnFn

ð1
0

1

s
g3(s)� b3

� �

� Gn(s)Jnþ1 s
1� b

2

� �
cos (xs)ds (35)
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where g2(s) and g3(s) are known functions (Appendix
2). lims!1 g2(s)=s ¼ b2 and lims!1 g3(s)=s ¼ b3, where
b2 and b3 are two constants which depend on the
properties of the materials (Appendix 2). When the
properties of the upper and the lower half-planes
are continuous along the crack line, b2 ¼ �e(1)150=2
and b3 ¼ �q(1)

150=2.
From the relationships [30] as shown in Appendix

5, the singular parts of the stress field, the electric
displacement field, and the magnetic flux near the
crack tips in equations (33) to (35) can be expressed,
respectively, as follows (x . 1 or x , b)

t ¼ b1

p

X1
n¼0

bnFnHn(b, x) (36)

D ¼ b2

p

X1
n¼0

bnFnHn(b, x) (37)

B ¼ b3

p

X1
n¼0

bnFnHn(b, x) (38)

where

Hn(b, x) ¼
(� 1)nþ1R(b, x, n), 0 , x , b

�R(b, x, n), x . 1

(

R(b, x, n) ¼ 2(1� b)nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ b� 2xj2 � (1� b)2

p h
j1þ b� 2xj

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ b� 2xj2 � (1� b)2

p inþ1

At the left tip of the right crack, the stress intensity
factor KL can be expressed as

KL ¼ lim
x!b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(b� x)

p
t

¼ �b1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

(1� b)

r X1
n¼0

(� 1)nbnFn (39)

At the right tip of the right crack, the stress inten-
sity factor KR can be expressed as

KR ¼ lim
x!1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(x � 1)

p
t

¼ �b1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

(1� b)

r X1
n¼0

bnFn (40)

At the left tip of the right crack, the electric displa-
cement intensity factor KD

L can be expressed as

KD
L ¼ lim

x!b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(b� x)

p
D

¼ �b2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

(1� b)

r X1
n¼0

(� 1)nbnFn ¼ b2

b1

KL (41)

At the right tip of the right crack, the electric dis-
placement intensity factor KD

R can be expressed as

KD
R ¼ lim

x!1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(x � 1)

p
D

¼ �b2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

(1� b)

r X1
n¼0

bnFn ¼ b2

b1

KR (42)

At the left tip of the right crack, the magnetic flux
intensity factor K B

L can be expressed as

K B
L ¼ lim

x!b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(b� x)

p
B

¼ �b3

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

(1� b)

r X1
n¼0

(� 1)nbnFn ¼ b3

b1

KL (43)

At the right tip of the right crack, the magnetic flux
intensity factor K B

R can be expressed as

K B
R ¼ lim

x!1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(x � 1)

p
D

¼ �b3

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

(1� b)

r X1
n¼0

bnFn ¼ b3

b1

KR (44)

6 NUMERICAL CALCULATIONS AND
DISCUSSION

From the literatures [21–23], it can be seen that the
Schmidt method performs satisfactorily if the first
10 terms of the infinite series (32) are retained. At
b 4 x 4 1, y ¼ 0, it can be obtained that t(1)yz =t0 is
very close to negative unity. Hence, the solution of
the present paper can also be proved to satisfy the
boundary conditions (2). In all computations,
according to references [1, 2, 9], the constants of
materials-I are assumed to be c(1)440 ¼ 44:0 (GPa),

e(1)150 ¼ 5:8 (C=m2), 1(1)110 ¼ 5:64�10�9 (C2=Nm2), q(1)
150 ¼

275:0 (N/A m), d(1)
110 ¼ 0:005� 10�9 (N s/V C), m(1)

110 ¼
�297:0� 10�6 (N s2=C2), r(1)0 ¼ 1500 kg/m3 and the

constants of materials-II are assumed to be

c(2)440 ¼ 34:0 (GPa), e(2)150 ¼ 4:8 (C/m2), 1(2)110 ¼ 4:64� 10�9

(C2=N m2), q(2)
150 ¼ 195:0 (N/A m), d(2)

110 ¼ 0:004� 10�9

(N s/V C), m(2)
110 ¼ �201:0 � 10�6 (N s2=C2), r(2)0 ¼

1000 kg/m3. The normalized non-homogeneity con-

stants b(i)(i ¼ 1, 2) are varied between 22 and 2,
which covers most of the practical cases. The results
of the present paper are shown in Figs 2 to 10. From
the results, the following observations are very
significant.

1. From the results, it can be shown that the singular
stress, electric displacement, and the magnetic
flux in the functionally graded piezoelectric/piezo-
magnetic materials carry the same forms as those
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in the homogeneous piezoelectric/piezomagnetic
materials or in the homogeneous piezoelectric
materials, but the magnitudes of the intensity fac-
tors depend significantly upon the gradient of the
functionally graded piezoelectric/piezomagnetic
materials properties as discussed in references
[19–22].

2. The magneto-electro-elastic coupling effects can
be obtained as shown in equations (39)–(44).
For the electric displacement and the magnetic
flux intensity factors, they have the same chan-
ging tendency as the stress intensity factors as
shown in Figs 2 to 4. However, the amplitude
values of the electric displacement field, the
magnetic flux field, and the stress field are differ-
ent. The amplitude values of the electric displa-
cement and the magnetic flux fields are very
small as shown in Figs 3 and 4. The results of
the electric displacement and the magnetic flux
intensity factors can be directly obtained from
the results of the stress intensity factors through
equations (39) to (44). This means that an
applied mechanical load alone can produce the
electric displacement and magnetic flux singu-
larities. The results of the electric displacement
and the magnetic flux intensity factors of the
other cases have been omitted in the present
paper.

3. The interaction of the two collinear cracks
decreases when the distance between the two
collinear cracks increases as shown in Figs 2 to
4. The intensity factors at the inner crack tips
are bigger than those at the outer crack tips.
However, the intensity factors at the inner and
outer crack tips are almost overlapped for b 5
0:5 as shown in Figs 2 to 4. When the material
properties of the upper half-plane are equal to
the ones of the lower half-plane along the crack

line, it can obtain the same conclusion as
shown in Figs 7 and 10. It can also be obtained
that this conclusion is the same as the dynamic
anti-plane shear fracture problem in the isotropic
homogeneous materials.

4. The dynamic stress intensity factors tend to
increase with the frequency of incident waves,
reaching a peak and then to decrease in magni-
tude as shown in Figs 5 to 7. The intensity factors
at the inner crack tips are bigger than those at
the outer crack tips for v=c1 , 2:3. However,
the intensity factors at the inner crack tips are
smaller than those at the outer crack tips for
v=c1 . 2:3 as shown in Figs 5 to 7. These
phenomena may be caused by the coupling
effects of the mechanical field, the electric field,
and the magnetic flux field. From the results, it
can be concluded that the stress, the electric

Fig. 2 The stress intensity factor versus b for v/

c1 ¼ 0.4, b(1) ¼ 0.2, and b(2) ¼ 0.4 (material-I/

material-II)

Fig. 3 The electric displacement intensity factor

versus b for v=c1 ¼ 0:4, b(1) ¼ 0:2, and b(2) ¼
0:4 (material-I/material-II)

Fig. 4 The magnetic flux intensity factor versus b for

v=c1 ¼ 0:4, b(1) ¼ 0:2, and b(2) ¼ 0:4 (material-I/

material-II)
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displacement, and the magnetic fields near the
crack tips can be deduced by adjusting the fre-
quency of incident waves in engineering
practices.

5. The stress intensity factors tend to decrease with
increase in the functionally graded parameters
b(i)(i ¼ 1, 2) as shown in Figs 8 to 10. When the
material properties of the upper half-plane and
the lower half-plane along the crack line are
continuous, it can obtain the same conclusion
as shown in Fig. 10. This means that, by adjust-
ing the functionally graded parameters, the
dynamic stress fields near the crack tips can be
reduced.

6. The solution of the present paper can revert to one
of the problems which the material properties of

Fig. 6 The stress intensity factor versus v=c1 for

b ¼ 0:4, b(1) ¼ 0:2, and b(2) ¼ 0:4 (material-I/

material-II)

Fig. 7 The stress intensity factor versus v=c1 for

b ¼ 0:1, b(1) ¼ 0:4, and b(2) ¼ 0:4 (material-I/

material-I)

Fig. 8 The stress intensity factor versus b(1) for

v=c1 ¼ 0:4, b ¼ 0:1, and b(2) ¼ 0:4 (material-I/

material-II)

Fig. 9 The stress intensity factor versus b(2) for

v=c1 ¼ 0:4, b ¼ 0:1, and b(1) ¼ 0:4 (material-I/

material-II)

Fig. 5 The stress intensity factor versus v=c1 for

b ¼ 0:1, b(1) ¼ 0:2, and b(2) ¼ 0:4 (material-I/

material-II)
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the upper half-plane and the lower half-plane
along the crack line are continuous as shown in
Figs 7 and 10.
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APPENDIX 1

Notation

a0
(i) the known constants

a1
(i) the known constants

A1(s) an unknown function
A2(s) an unknown function
b the half-distance between two

collinear cracks
bn the unknown coefficients
B1(s) an unknown function
B2(s) an unknown function
Bk0
(i) (x, y, t) in-plane magnetic flux

Bk
(i) (x, y) the amplitude of Bk0

(i)(x, y, t)
ci the shear wave velocities
c440
i the shear modulus
C1 (s) an unknown function
C2 (s) an unknown function
d150
(i) the magnetioelectric coefficients

Dk0
(i)(x, y, t) in-plane electric displacement fields

Dk
(i)(x, y) the amplitude of Dk0

(i)(x, y, t)
e150
(i) the piezoelectric coefficients
f(x) the jump of the displacements across

the crack surfaces
g1(s) a known function
g2(s) a known function
g3(s) a known function
Gn(s) the known functions
Jn(x) the Bessel functions
KL the stress intensity factor at the left

tip of the right crack
KR the stress intensity factor at the right

tip of the right crack
KL
B the magnetic flux intensity factor at

the left tip of the right crack
KR
B the magnetic flux intensity factor at

the right tip of the right crack

KL
D the electric displacement intensity

factor at the left tip of the right crack
KR
B the electric displacement intensity

factor at the right tip of the right
crack

Pn
(1/2, 1/2)(x) the Jacobi polynomials

q150
(i) the piezomagnetic coefficients

w0
(i)(x, y, t) the mechanical displacements

w (i)(x, y) the amplitude of w0
(i) (x, y, t)

b1 a known constant
b2 a known constant
b3 a known constant
b(i) the functionally graded parameters
g1
(i) the known functions

g2
(i) the known functions

g(x) the Gamma function
1110
(i) the dielectric parameters

m110
(i) the magnetic permeability

m0
(i) the known constants

r0
(i) the mass densities

tzk0
(i) (x, y, t) the anti-plane shear stress fields
tzk
(i)(x, y) the amplitude of tzk0

(i) (x, y, t)
t0 the magnitude of the incident wave
f0
(i)(x, y, t) the electric potentials

f(i)(x, y) the amplitude of f0
(i)(x, y, t)

c0
(i)(x, y, t) the magnetic potentials

c(i)(x, y) the amplitude of c0
(i)(x, y, t)

v the circular frequency of the incident
wave

r2 the two-dimensional Laplace
operator

APPENDIX 2

The functions of g1(s), g2(s), and g3(s) can be obtained
by the operation of the following matrixes

½X1� ¼
1 0 0

a(1)
0 1 0

a(1)
1 0 1

2
64

3
75, ½X2� ¼

�1 0 0

�a(2)
0 �1 0

�a(2)
1 0 �1

2
64

3
75

½X3� ¼
m(1)
0 g(1)1 g(1)2 e(1)150 g(1)2 q(1)

150

0 g(1)2 1(1)110 g(1)2 d(1)
110

0 g(1)2 d(1)
110 g(1)2 m(1)

110

2
64

3
75

½X4� ¼
m(2)
0 g(2)1 g(2)2 e(2)150 g(2)2 q(2)

150

0 g(2)2 1(2)110 g(2)2 d(2)
110

0 g(2)2 d(2)
110 g(2)2 m(2)

110

2
64

3
75

½X5� ¼ ½X1� � ½X2�½X4��1½X3�
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½X6� ¼
�m(1)

0 g(1)1 �g(1)2 e(1)150 �g(1)2 q(1)
150

0 g(1)2 1(1)110 g(1)2 d(1)
110

0 g(1)2 d(1)
110 g(1)2 m(1)

110

2
64

3
75

½X7� ¼
x11(s) x12(s) x13(s)

x21(s) x22(s) x23(s)

x31(s) x32(s) x33(s)

2
64

3
75 ¼ ½X6�½X5��1

g1(s) ¼ x11(s), g2(s) ¼ x21(s), g3(s) ¼ x31(s)

The constants of b1, b2, and b3 can be obtained by
the operation of the following matrixes

½Y3� ¼
m(1)
0 e(1)150 q(1)

150

0 1(1)110 d(1)
110

0 d(1)
110 m(1)

110

2
64

3
75

½Y4� ¼
m(2)
0 e(2)150 q(2)

150

0 1(2)110 d(2)
110

0 d(2)
110 m(2)

110

2
64

3
75

½Y5� ¼ ½X1� � ½X2�½Y4��1½Y3�

½Y6� ¼
�m(1)

0 �e(1)150 �q(1)
150

0 1(1)110 d(1)
110

0 d(1)
110 m(1)

110

2
64

3
75

½Y7� ¼
y11 y12 y13

y21 y22 y23

y31 y32 y33

2
64

3
75 ¼ ½Y6�½Y5��1

b1 ¼ y11, b2 ¼ y21, b3 ¼ y31

APPENDIX 3

From the relationships[30]

ð1
0

1

s
Jn(sa) sin (bs)ds ¼

sin½n sin�1 (b=a)�
n

, a . b

an sin (np=2)

n½bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
�n , a , b

8>><
>>:

(45)

ð1
0

1

s
Jn(sa) cos (bs)ds ¼

cos½n sin�1 (b=a)�
n

, a . b

an cos (np=2)

n½bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
�n , a , b

8>><
>>:

(46)

the semi-infinite integrals in equation (32) can be
modified as

ð1
0

1

s
b1 þ

g1(s)

s
� b1

� �� �
Jnþ1 s

1� b

2

� �

� cos s
1þ b

2

� �
sin (sx)ds

¼ b1

2(nþ 1)

� ((1� b)=2)nþ1 sin ((nþ 1)p=2)

{x þ (1þ b)=2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x þ (1þ b)=2)2

p
� ((1� b)=2)2}nþ1

8>>><
>>>:

� sin (nþ 1) sin�1 1þ b� 2x

1� b

� �� �
9>>>=
>>>;

þ
ð1
0

1

s

g1(s)

s
� b1

� �
Jnþ1 s

1� b

2

� �

� cos s
1þ b

2

� �
sin (sx)ds (47)

ð1
0

1

s
b1 þ

g1(s)

s
� b1

� �� �
Jnþ1 s

1� b

2

� �

� sin s
1þ b

2

� �
sin (sx)ds

¼ b1

2(nþ 1)
cos (nþ 1) sin�1 1þ b� 2x

1� b

� �� �
8>>><
>>>:

� ((1� b)=2)nþ1 cos ((nþ 1)p=2)

{x þ (1þ b)=2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x þ (1þ b)=2)2 � ((1� b)=2)2

p
}nþ1

9>>>=
>>>;

þ
ð1
0

1

s

g1(s)

s
� b1

� �
Jnþ1 s

1� b

2

� �

� sin s
1þ b

2

� �
sin (sx)ds

It can be seen that the integrands in the right end of
equations (47) and (48) tend rapidly to zero.

APPENDIX 4

For brevity, equation (32) can be rewritten as

X1
n¼0

bnEn(x) ¼ U(x), b 4 x 4 1 (49)

where En(x) and U(x) are known functions and co-
efficients bn are unknown and will be determined.
A set of functions Pn(x), which satisfies the orthogon-
ality conditionsð1

b

Pm(x)Pn(x)dx ¼ Nndmn, Nn ¼
ð1
b

P2
n(x)dx (50)

Scattering of the harmonic anti-plane shear stress waves 147

JMES129 # IMechE 2006 Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science

 at UNIV OF MICHIGAN on April 19, 2015pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


can be constructed from the function, En(x), such
that

Pn(x) ¼
Xn
i¼0

Min

Mnn
Ei(x) (51)

where Mij is the cofactor of the element dij of Dn,
which is defined as

Dn ¼

d00, d01, d02, . . . , d0n

d10, d11, d12, . . . , d1n

d20, d21, d22, . . . , d2n

� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
dn0, dn1, dn2, � � � , dnn

2
666666666664

3
777777777775

dij ¼
ð1
b

Ei(x)Ej(x)dx (52)

Using equations (49) to (52), it can be obtained

bn ¼
X1
j¼n

qj
Mnj

Mjj
, qj ¼ 1

Nj

ð1
b

U(x)Pj(x)dx (53)

APPENDIX 5

cos s
1þ b

2

� �
cos (sx) ¼ 1

2
cos s

1þ b

2
� x

� �� ��

þ cos s
1þ b

2
þ x

� �� ��

sin s
1þ b

2

� �
cos (sx) ¼ 1

2
sin s

1þ b

2
� x

� �� ��

þ sin s
1þ b

2
þ x

� �� ��
ð1
0

Jn(sa) cos (bs)ds

¼
cos½n sin�1 (b=a)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p , a . b

� an sin (np=2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
½bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
�n , b . a

8>>><
>>>:

ð1
0

Jn(sa) sin (bs)ds

¼
sin½n sin�1 (b=a)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p , a . b

an cos (np=2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
½bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
�n , b . a

8>>><
>>>:
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